Resources
Tutorials / Courses / Repos / Relevant papers
- ML Tutorials: https://machinelearningmastery.com/
- AI Python for beginners (free online course): https://www.deeplearning.ai/short-courses/ai-python-for-beginners/
- LLM Interpretability: https://www.neelnanda.io/mechanistic-interpretability/favourite-papers
- FDA guidelines: https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
- Transformers in Time Series: https://github.com/qingsongedu/time-series-transformers-review
- ChatGPT Leak: https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
Books
- Machine Learning with Python Cookbook: https://www.oreilly.com/library/view/machine-learning-with/9781491989371/
- https://www.amazon.de/-/en/Francois-Chollet/dp/3958458386 :
- Deep Learning by Ian Goodfellow: https://www.deeplearningbook.org/
- Probabilistic Machine Learning by Murphy: https://probml.github.io/pml-book/book1.html
People
- AI founder and influencer: https://www.ykilcher.com/
- Youtuber: https://www.youtube.com/@NicholasRenotte
Relevant papers
- Transformers: https://arxiv.org/abs/1706.03762
- KAN Networks: https://arxiv.org/abs/2404.19756
AI Association resources and past talks
- Machine Learning in Data-Driven marketing: https://github.com/AndreasKarasenko/presentation_10-2024